:py:mod:`train_autoencoder` =========================== .. py:module:: train_autoencoder .. autoapi-nested-parse:: Trains (or validates etc.) an AutoEncoder model against images using the PyTorch Lightning Command Line Interface. Please see :class:`cnn.AutoEncoder` for details of the auto-encoder architecture. Input Arguments =============== Please see `PyTorch Lightning CLI `_ for details on how to use the command line interface. The help page prints all options:: python -m anchor_python_training.train_autoencoder -h As a suggestion, first create a configuration file by saving the contents to e.g. `config.yaml`:: python -m anchor_python_training.train_autoencoder fit --print_config and then use these configuration file to perform the training:: python -m anchor_python_training.train_autoencoder fit --config config.yaml The outputted model is saved incrementally via checkpoints to a directory `lightning_logs` in the working directory (unless otherwise configured). The `predict` subcommand is not currently recommended for productive use. Module Contents --------------- Functions ~~~~~~~~~ .. autoapisummary:: train_autoencoder.main .. py:function:: main()